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Abstract: The problem of extracting knowledge from decision tables in terms of 
functional dependencies is one of the important problems in knowledge discovery 
and data mining. Based on some results in relational database, in this paper we 
propose two algorithms. The first one is to find all reducts of a consistent decision 
table. The second is to infer functional dependencies from a consistent decision 
table. The second algorithm is based on the result of the first. We show that the time 
complexity of the two algorithms proposed is exponential in the number of 
attributes in the worst case. 
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1. Introduction 

In rough set theory, for the given consistent decision table { }( )DS ,U A d= ∪ , an 

attribute set R is called a reduct of A if R is a minimal set, which satisfies the 
functional dependency { }R d→ . Consequently, the problem of determining all 

functional dependencies { }iR d→  where iR A⊆  can be solved by searching all 
reducts of the decision table DS. This problem can be considered as the problem of 
extracting all possible  knowledge from a given consistent decision table in terms of 
functional dependencies. This is one of the important problems in the field of 
knowledge discovery and data mining. 
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In relational database theory, if R  is a relation over an attribute set A  then an 
attribute set B is called a minimal set of an attribute a A∈  if B is a minimal 
attribute set, which satisfies the functional dependency { }B a→ . If any consistent 

decision table { }( )DS ,U A d= ∪  can be treated as a relation { }1,..., nu u=R  over the 

set of all attributes { }A d∪ , then the concept of reduct in DS  is equivalent to the 

concept of a minimal set of the attribute d over R .  Consequently, the problem of 
searching all reducts of a consistent decision table can be solved by using some 
results concerning the minimal sets of an attribute in relational database theory. 

In this paper we propose two algorithms. The first one is to find all reducts of a 
consistent decision table. The second is to infer functional dependencies from a 
consistent decision table. The second algorithm is based on the result of the first. 
The two algorithms are constructed based on some results about Sperner system and 
minimal sets of an attribute of J. D e m e t r o v i c s  and  V u  D u c  T h i  [1, 2, 4]. 
We show that the time complexity of the two algorithms is exponential in the 
number of attributes in the worst case. However, the proposed algorithms are 
effective in some special cases. 

The paper is structured as follows. Section 2 presents some basic concepts in 
relational database and rough set theory. Section 3 proposes an algorithm to search 
all reducts of a consistent decision table. Section 4 proposes an algorithm to 
construct a relation scheme from a consistent decision table based on the algorithm 
in Section 3. The conclusions are presented in the last section. 

2. Basic concepts 

2.1.  Basic concepts of rough set theory 

In this section we introduce some basic concepts in rough set theory [7, 8, 9]. 
An information system is a pair ( )IS ,U A= , where the set U denotes the 

universe of objects and A is the set of attributes, i.e., mappings of the form: 
: aa U V→ ; aV  is called the value set of attribute a. A decision table is an 

information system { }( )DS ,U A d= ∪  where d is a distinguished decision attribute. 

The remaining attributes are called conditions or conditional attributes. 
Every attribute subset B A⊆  determines a binary discernibility 

relation ( )IND B : 

( ) ( ) ( ) ( ){ }IND , , ,B u v U U a B a u a v= ∈ × ∀ ∈ =  

( )IND B determines a partition of U which is denoted by /U B . Any element 

[ ] ( ) ( ){ }, IND
B

x y U x y B= ∈ ∈  in /U B  is called equivalent class. For B A⊆  

and X U⊆ , B-upper approximation of X is the set [ ]{ }= ∈ ∩ ≠∅
B

BX u U u X , 
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B-lower approximation of X is the set [ ]{ }= ∈ ⊆
B

BX u U u X , B-boundary of X  is 

the set ( ) \=BBN X BX BX  and  B-positive region of { }d  is the set 

{ }( ) ( )
{ }/

POSB
X U d

d BX
∈

= ∪ . A decision table DS is consistent iif { }( )POS ,A d U=   

in other words the functional dependency { }A d→  is true.  Conversely, DS is 

inconsistent, and then { }( )POSA d is the maximum subset of U that the functional 

dependency { }A d→  is true. 
One of the crucial concepts in rough set theory is reducts or decision reducts 

[8]. In general, reducts are minimal subsets (with respect to the set inclusion 
relation) of the attributes which contain a necessary portion of information about 
the set of all attributes.  

Definition 1. [8] Let { }( )DS ,U A d= ∪ be a decision table. If R A⊆  

satisfies: 
1) { } { }POS ( ) POS ( ),R Ad d=  

2) { } { } { }, POS ( ) POS ( ),AR rr R d d−∀ ∈ ≠  

then R is called a reduct of DS. 
If DS is a consistent decision table, it is known from the above definition that 

R is a reduct of A if R satisfies { }R d→  and 'R R∀ ⊂ , 'R → { }d . Let RED(DS) be 
the set of all reducts of DS. 

2.2.  Basic concepts and algorithms of the relational database 

Let us give some necessary definitions and results of the theory of relation database 
that can be found in [1-6]. 

Let  { }1,..., kA a a=  be a finite set of attributes and let ( )iD a  be the set of all 
possible values of the attribute ia , for 1,...,i k= . Any subset of the Cartesian 
product 

( ) ( ) ( )1 2 ... kD a D a D a⊆ × × ×R  
is called the relation over A. In other words, relation over A is the set of tuples 
{ }1,..., mh h  where ( ): ,1 ,

i
j ia A

h A D a j n
∈

→ ≤ ≤∪  is a function that ( ) ( )j i ih a D a∈ . 

Let { }1,..., nh h=R  be a given relation over { }1,..., kA a a= . Any pair of 
attribute sets ,B C A⊆  is called functional dependency (FD for short) over A, and 
denoted by B C→ , if and only if for any pair of tuples ,i jh h ∈R : 

( ) ( )( ) ( ) ( )( )a B i j a C i jh a h a h a h a∈ ∈∀ = ⇒∀ = . 

The set ( ){ }, : , ;B C B C A B C= ⊂ →RF is called a full family of functional 

dependencies in R . 
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Let ( )AP  be the power set of attribute set A. A family ( ) ( )A A⊂ ×R P P  is 
called an f-family over A if and only if for all subsets of attributes , , , ,P Q S T A⊆  
the following properties hold: 

( )R1: , ;P P ∈R  

( ) ( ) ( )R2 : , , , , ;P Q Q S P S∈ ∈ ⇒ ∈R R R

( ) ( )R3: , , , , ;P Q P S T Q S T∈ ⊆ ⊆ ⇒ ∈R R  

( ) ( ) ( )R4 : , , , ,P Q R S P R Q T .∈ ∈ ⇒ ∪ ∪ ∈R R R��� 
Clearly RF  is an f-family over A. It is also known that if F  is an f-family 

over A, then there is a relation R  such that .=RF F  
A pair ( ),A= FS , where A is a set of attributes and F  is a set of FDs on A, 

is called a relation scheme. Let us denote by +F  the set of all FDs, which can be 
derived from F  by using the rules R1-R4 . For any B A⊆ , the set 

{ }:B a A B a+ += ∈ → ∈F is called the closure of B on S . It is clear that 

B C +→ ∈F if and only if C B+⊆ . 
Recall that a family ( )A∈K P  is a Sperner system if for any 

1 2,K K ∈K implies 1K ⊆ 2K . Let K  be a Sperner system. We defined the set 1−K , 
as follows: 

1 : CB A C−
∈= ⊆ ∀ ⊆KK ( ) ( ){ }.CB B D C D∈∧ ⊆ →∃ ⊆K  

It is easy to see that 1−K  is the set of subsets of A, which does not contain the 
elements of K  and which is maximal for this property. Clearly, 1−K  is also a 
Sperner system. 

For the given relation { }1,..., nh h=R  over { }1,..., kA a a= , let 

( ) { }:1ijE i j n= ≤ < ≤RE , where ( ) ( ){ }:ij i jE a A h a h a= ∈ = . Thus, it is called 

the equality set of R . It is known [1] that for each subset of attributes B A⊆ , the 
following property holds: 

( ), 1
if for some ;

otherwise.

n
ij ij iji j

E B E E
B

A
+ =

⎧ ⊆ ∈⎪= ⎨
⎪⎩

∪ E R  

In the next content we introduce some definitions about the family of all 
minimal sets of  an attribute over a relation and a relation scheme. 

Definition 2. [4] Let ( ),A=S F  be a relation scheme over A. For any attribute 

,a A∈  the set ( ) :K a B A B a= ⊆ → ∧ ∃S { }C BC a⊂ →  is called a family of all minimal 

sets of the attribute a over S . 
Similarly, we define the family of minimal sets of an attribute over a relation 
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Definition 3. Let R  be a relation over A. For any attribute ,a A∈  the set 

( ) :K a B A B a= ⊆ → ∧ ∃R { }C BC a⊂ →  is called a family of all minimal sets of the 

attribute a over R . 
It is known that ( ) ( ) ( ) ( ), , ,A K a A K a a K a a K a∉ ∉ ∈ ∈R RS S  and 

( ) ( ),K a K aRS  are Sperner systems over A. 
In the relational database theory, two algorithms which are related to Sperner 

system have been proposed [1, 2]. 
Algorithm 1. [1] Finding 1−K  from a given Sperner-system K . 
Input: Let { }1,..., mB B=K be a Sperner-system over A. 
Output: 1−K  
Step 1. We set { }{ }1 1:R a a B= − ∈K . It is obvious that { } 1

1 1B −=K . 

Step q+1. (q < m). Assume that { }1,...,q q tqF X X= ∪K , where 1,..., tqX X  are 

elements of  qK containing Bq+1 and 1:q q qF A B += ∈ ⊆K{ }A . For all  

i , i = 1, …, tq , we calculate { } 1

1qB
−

+  on Xi in an analogous way as 1K , which are 

the maximal subsets of Xi not containing Bq+1 . We denote them by 1 ,...,i i
riA A . Let: 

{ }1 : , 1 , 1 .i i
q q p q p q iF A A F A A i t p r+ = ∪ ∈ ⇒ ⊄ ≤ ≤ ≤ ≤K  

Finally, let 1
m

− =K K . 

Suppose that qI  is the number of elements of qK . According to [1], the time 

complexity of Algorithm 1 in the worst case is 
1

2

1
,

m

q q
q

O R t u
−

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  where = −q q qu I t  

if >q qI t  and uq = 1 if =q qI t . This time complexity cannot be more than 
exponential in the number of attributes. In cases, for which 

:1 1,q mI I q q m≤ ∀ ≤ ≤ −  the time complexity of Algorithm 1 is not greater than 

( )22 1O R −K K . Thus, in these cases the algorithm finds 1−K  in polynomial time 

in ,R K  and 1−K .  Especially, when 1, −K K  is small, Algorithm 1 is effective.  

Algorithm 2 [2]. Finding a set D∈K  from 1−K . 
Input: Let 1−K  be a Sperner-system over A, { }1,..., mC b b A= ⊆  such that 

1 : .B B C−∃ ∈ ⊆K   
Output: D∈K . 
Step 1. We set ( )0T C= . 
Step i+1.  We set 

( ) 1( 1) ++ = − iT i T i b  if 1B −∀ ∈K ,  there is not ⊆T B , 
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( )( 1)+ =T i T i  otherwise. 

Finally, we set ( )D T m= . 

Algorithm 3 [2]. Finding K from 1−K  
Input: Let { }1

1,..., mB B− =K  be a Sperner-system over A. 
Output: .K������ 
Step 1. Using Algorithm 2, we construct 1A . We set 1 1A=H . 

Step i+1. If there is a 1
iB −∈H  such that B ⊆ ( ):1jB j j m∀ ≤ ≤ , then using 

Algorithm 2 we calculate Ai+1, where 1 1,i iA A B+ +∈ ⊆K . We set 1 1i i iA+ += ∪H H . 
In the converse case we set i=K H . 

According to [2], the time complexity of Algorithm 3 is 

( )
1

21 1

1
q q q

q
O R I R t u R

−
− −

=

⎛ ⎞⎛ ⎞
+ + +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑
K

K K  where , ,q q qI t u  are defined as in 

Algorithm 1. Consequently, the worst-case time of Algorithm 3 cannot be more 
than exponential in the number of attributes. In cases, for which 

1 , 1,..., 1,qI q m−≤ = −K  the time complexity of Algorithm 3 is ( )22 1O R −K K , 

this complexity is polynomial in 1,R −K  and K . Clearly, if K  is polynomial 

in 1,R −K  then the algorithm is effective. Especially, when K  is small. 

3. An algorithm for searching all  reducts of a consistent decision table 

Let { }( )DS ,U A d= ∪  be a consistent decision table, it is known from the above 
Definiton 1 and 3 that R A⊆  is a reduct of A if { } { }POS ( ) POS ( )R Ad d U= =  (or 

{ }R d→ ) and for 'R R∀ ⊂ , { } { }'POS ( ) POS ( )AR
d d≠  (or 'R →{ }d ). Hence, the 

problem of finding the set of all reducts of A in the consistent decision table 
{ }( )DS ,U A d= ∪ where { }1 2, ,..., nU u u u=  becomes the problem of finding the 

family of all minimal sets of the attribute {d} for the relation { }1 2, ,..., nu u u=R  over 
the attribute set { }A d∪ . Denote ( )RED DS  as the set of all reducts of DS, then we 
have ( ) ( ) { }RED DS K d d= −R  where ( )K dR  is the family of all minimal sets of 
the attribute {d} over R . 

Algorithm 4. Finding the set of all reducts in a consistent decision table. 
Input: Let { }( )DS ,U A d= ∪  be a decision table, where { }POS ( ) ,A d U=  

{ }1 2, ,..., nA a a a= , { }1 2, ,..., mU u u u= . 

Output: ( )RED DS . 
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Let us consider the decision table DS as the relation { }1 2, ,..., mu u u=R  over 

the set of attributes { }R A d= ∪ . 

Step 1. From R , we construct the equality system { }ij :1r E i j m= ≤ < ≤E  

where  ( ) ( ){ }ij := ∈ =i jE a R u a u a .  

Step 2. From rE , we construct 

:d rA d A= ∈ ∉ ∃M E{ }: ,rB d B A B∈ ∉ ⊂E . 

Step 3. Using Algorithm 3, we calculate K  from ( )1
d d

−=M M K . 

Step 4. We set ( ) { }RED DS d= −K . 
According to the method to construct dM  at Step 2 and the method to 

calculate the closure of an attribute set over a relation, dA∀ ∈M  we have A A+ =  
and A does not contain d, so A+  does not contain d,  then { }A d +→ ∉F . 
Moreover, if there exists B such that A B⊂  then there are two cases: (1) if B does 
not contain d, then B R+ = ; (2) if B contains d then obviously B+  contains d. For 
both cases we have { }B d +→ ∈F . Hence, ( )MAX ,d d+=M F  where 

( ) { } { }{ }MAX , : ,d A R A d A B B d+ + += ⊆ → ∉ ⊂ ⇒ → ∈F F F . According to [4], 

( ) ( )( ) 1
MAX , d K d

−+ = RF  where ( )K dR  is the Sperner-system over R as the 

family of all minimal sets of the attribute d, so ( )( ) 1
d K d

−
= RM . Consequently, at 

Step 3, ( )K d= RK  is the family of all minimal sets of the attribute d. At Step 4, 

( ) { }RED DS d= −K  is the set of all reducts of DS. 
It is easy to see that the time complexity of Step 1 and Step 2 is polynomial in 

the size of R . So the time complexity of Algorithm 4 is the same as that of 
Algorithm 3 at Step 3. Consequently, the worst-case time of Algorithm 4 cannot be 
more than exponential in the number of attributes. As Algorithm 3, Algorithm 4 is 
also effective in some special cases. 

Example 1. Let us consider the consistent decision table { }( )DS ,U A d= ∪ , 

where { }1 2 3 4 5 6 7, , , , , ,U u u u u u u u= , { }, ,A a b c= (Table 1). 

Table 1.  An example decision table 
U a b c d 
u1 6 6 0 6 
u2 0 2 2 0 
u3 0 0 0 0 
u4 0 0 3 0 
u5 4 4 0 0 
u6 5 0 5 5 
u7 1 0 0 0 
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We perform the following steps of Algorithm 4 to calculate ( )RED DS . 
Step 1. We calculate 

{ } { } { } { } { } { } { } { }{ }, , , , , , , , , , , , , , .r a b d b c d a d b d c d b c d=E  

Step 2. We calculate { } { }{ }, .d b c=M  

Step 3. Using Algorithm 3 we calculate K  from 1−K  ( )1 .d
− =K M  

We have { } { }1 2, .B b B c= =  

Using Algorithm 2 we calculate { }1 1A d= =K . Using Algorithm 1 we 

calculate { } { }11
1 , , .d a b c−− = =K  

We choose { }, , ,B a b c B= ⊆ 1,B B ⊆ 2.B  Using Algorithm 2 we calculate 

{ }2 ,A b c= . So { } { }{ }2 , , .d b c=K  Using Algorithm 1 we calculate 

{ } { }{ }1
2 , , , .a b a c− =K  

It is known that { } 1,a b B∉  and { } 2, ,a b B∉  so we choose { }, .B a b=  Using 

Algorithm 2 we calculate { }3A a= . So { } { } { }{ }3 , , , .d b c a=K  Using Algorithm 1 

we calculate { } { }{ }1
3 , .b c− =K  

Clearly, 1
3 1,B B B−∀ ∈ ∈K  or 2B B∈ , the algorithm stops and 

{ } { } { }{ }3 , , , .d b c a= =K K  

Step 4. ( ) { } { } { }{ }RED DS , , .d a b c= − =K  

4. An algorithm for inferring functional dependencies  
from a consistent decision table 
 
Given a consistent decision table { }( )DS ,U A d= ∪  as a relation R  over an 

attribute { }R A d= ∪ . In this section we propose an algorithm to construct the 

relation scheme ( ), ,d R=S F  where F   is the set of functional dependencies 

{ }, , 1 ,i iA d A A i t→ ⊆ ≤ ≤  such that ( ) ( ) { }RED DS ,K d d= ∪S  where ( )K dS  

is the family of all minimal sets of the attribute d over dS  and ( )RED DS  is the set 
of all reducts of DS. 

Algorithm 5. Inferring functional dependencies from a consistent decision 
table. 

Input: Let { }( )DS ,U A d= ∪ be a decision table, where { }POS ( ) .A d U=  

Output: ( ),d R=S F  such that ( ) ( ) { }RED DS .K d d= ∪S  
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Step 1. Using Algorithm 4 we obtain ( )RED DS .  Assume that 

( ) { }1 2RED DS , , ..., .tK K K=   It is easy to see that ( )RED DS  is a Sperner-
system over A. 

Step 2. For each ( )RED DS , 1 ,iK i t∈ ≤ ≤  we construct the functional 

dependency { }iK d→ . The obtained relation scheme ( ), ,d R=S F  where 

{ }R A d= ∪  and { } ( ){ }: RED DS ,i iK d K= → ∈F  is  the result of Algorithm 5. 

P r o o f:  ( ) ( ) { }RED DS :K d d= ∪S  

(1) For any ( ) { }RED DSK d∈ ∪  we have { }→K d  and there does not exist 

'K K⊂  such that { }'K d→ . Consequently, K is a minimal set of the attribute d 

with respect to ( ), ,d R=S F   that is ( )K K d∈ S . 

(2) Conversely, assume that there exists ( ) { }, ,K K d K d∈ ≠S  such that 

( )RED DS ,K ∉  then we have { }→K d  and there does not exist 'K K⊂  such 

that { }'K d→ . It is easy to see that for any ( )RED DS ,iK ∈ iK K⊄  because: 
(i) if iK K⊂  then Ki is not a reduct of A; moreover, for any 

( )RED DS ,i iK K∈ ⊂ ;K  (ii) if iK K⊂  then K is not a minimal set of the attribute 

d. From (i), (ii) we can conclude that { }1 2, , , ..., tK K K KK= is a Sperner-system 

and for any A⊂ K  we have { }→A d . According to the definition, K is the set of 

all reducts of DS, that is ( )RED DS .K ∈  This is in contradiction with the 
condition ( )RED DS .K ∉  Therefore we have ( )RED DS .K ∈  

From (1) and (2) we conclude ( ) ( ) { }RED DS .K d d= ∪S  
It is easy to see that the time complexity of Step 1 is the time complexity of 

Algorithm 4. The time complexity of Step 2 is ( )( )RED DS .O  Consequently, the 

worst-case time of Algorithm 5 cannot be more than exponential in the number of 
attributes. As Algorithm 4, Algorithm 5 is also effective in some special cases. 

Example 2. From the decision table in Example 1 we have 
( ) { } { }{ }RED DS , , .a b c=  Consequently, the obtained relation scheme is 

( ),d R=S F  where { }, , ,R a b c d=  and { } { } { } { }{ }, , .a d b c d= → →F  

5. Conclution 

Based on some results of J. Demetrovics  and Vu Duc Thi, concerning Sperner 
system and minimal sets of an attribute in relational database theory [1, 2, 4], we 
propose two algorithms on consistent decision tables in rough set theory. The first 
one is to find all reducts of a consistent decision table. The second is to construct a 
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relation scheme from a consistent decision table. As Algorithm 3 [2], the worst-case 
time of the two algorithms is exponential in the number of conditional attributes. 
However, both algorithms proposed are effective in many special cases. These 
results have significant contribution in extracting knowledge from data tables. 
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